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Abstract: Efficient network design, construction and analysis are 

important topics, considering the highly dynamic environment in 

which data communication occurs nowadays. In this paper we 

address several problems concerning these topics from an 

algorithmic point of view. 
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1. Introduction 
Efficient network design and analysis techniques are strongly 

required in the highly dynamic environment in which data transfers 

occur nowadays. In this paper we focus on several algorithmic 

aspects of network design and analysis. We consider several 

constrained network design and (re)construction problems (Section 

2), and several edge and vertex classification problems (Section 3). 

In Section 4 we discuss related work and we conclude. 
 

2. Optimal Network Design and (Re)construction Problems 
We consider N≥3 points in the plane, whose coordinates (x(i),y(i)) 

are not given. Every point i has a weight w(i)>0 (1≤i≤N). The 

arrangement of points is considered balanced if for every 3 distinct 

points A, B and C, we have w(A)+w(B)+w(C)=AreaTri(A,B,C) 

(AreaTri(A,B,C) is the area of the triangle ABC). We want to 

compute the coordinates of the points, such that the resulting 

arrangement is balanced. Moreover, we have w(N-1)=w(N). We first 

notice that there is no solution for N≥5. Thus, we only need to handle 

the cases N=3 and N=4. For N=3 we can choose: x(2)=y(2)=0, 

x(3)=2, y(3)=0, x(1)=0, y(1)=w(1)+w(2)+w(3). The triangle has a 

right angle at (0,0). The two perpendicular sides have lengths 
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C1=w(1)+w(2)+w(3) and C2=2. Thus, the triangle’s area is 

(C1·C2)/2=w(1)+w(2)+w(3). For N=4 we have 2 subcases. In the 

first subcase we have w(1)=w(2) (apart from w(3)=w(4)). In this 

subcase we will choose the coordinates of the points 3 and 4 at (0,0) 

and (2,0). The coordinates of point 1 will be (0, w(1)+w(3)+w(4)), 

and those of point 2 will be (2·(w(1)+w(2)+w(4))/(w(1)+w(3)+w(4)), 

w(1)+w(3)+w(4)). The 4 points form a trapezoid whose parallel sides 

are the segments connecting the points 1-2 and 3-4. Triangles 1-3-4 

and 2-3-4 have heights of (w(1)+w(3)+w(4)), perpendicular on sides 

of length 2. Triangles 1-2-3 and 1-2-4 have heights equal to 

(w(1)+w(3)+w(4)) and perpendicular on a side with length 

2·(w(1)+w(2)+w(4))/(w(1)+w(3)+w(4)); thus, their area is 

w(1)+w(2)+w(4)=w(1)+w(2)+w(3). The second subcase for N=4 

occurs when w(1)+w(2)=2·w(4). In this subcase, the coordinates of 

the points 3 and 4 will be (0,0) and (2,0), and those of the points 1 

and 2 will be (1, (w(1)+w(3)+w(4))) and (1, -(w(2)+w(3)+w(4))). 

We notice that the 2 subcases for N=4 correspond to the situations in 

which the points 1 and 2 are on the same side or on opposite sides of 

the segment 3-4. We notice that for N≥5 (or N=4 and weights which 

do not satisfy the conditions of the two subcases) we cannot have a 

solution, because: if we have 4 points, then either the segment 1-2 is 

parallel to the segment 3-4, or the segment 1-2 intersects the segment 

3-4 at its midpoint. For N≥5, one of these 2 situations should occur 

for the pairs (1,2), (1,3) and (2,3) (relative to the segment 4-5, 

respectively to the midpoint of the segment 4-5). This indicates that 

either the area of the triangle 1-2-3 is 0 (but w(1)+w(2)+w(3)>0), or 

that one of the points 1, 2 or 3 (let this point be P) is the midpoint of 

the segment 4-5, in which case the area of the triangle 4-5-P would 

be 0 (but w(4)+w(5)+w(P)>0). 

The 2
nd

 problem considers the reconstruction of a polygon with a 

known number N of vertices, whose edges may self-intersect. Let’s 

consider that vertex i of the polygon has coordinates (x(i), y(i)) 

(1≤i≤N). On the support line of every edge (i, i+1) of the polygon 

(where i+1=1, for i=N), a point p(i) is chosen at distance 

t(i)·D(i,i+1) away from vertex i and towards vertex i+1. D(i,i+1) is 

the length of the edge (i,i+1) and t(i)≠0. The coordinates of the point 
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p(i) are (xp(i),yp(i)). We want to reconstruct the polygon from the N 

points p(i). The coordinate xp(i) (yp(i)) of a point p(i) can be written 

as follows, based on the coordinates of the vertices i and i+1: xp(i)= 

x(i)+t(i)·(x(i+1)-x(i))=(1-t(i))·x(i)+t(i)·x(i+1) (yp(i)=(1-t(i))·y(i)+ 

t(i)·y(i+1)). Based on these equations we will write the coordinate x 

(y) of every vertex as a linear function of the coordinate x(1) (y(1)). 

We have x(i)=ax(i)·x(1)+bx(i) (y(i)=ay(i)·y(1)+by(i)). For i=1 we 

have ax(1)=1, bx(1)=0, ay(1)=1, and by(1)=0. For 2≤i≤N+1, we will 

obtain x(i) (y(i)) from the equation of point p(i-1): x(i)=(xp(i-1)-(1-

t(i-1))·x(i-1))/t(i-1)=(t(i-1)-1)/t(i-1)·x(i-1)+xp(i-1)/t(i-1) (the equation 

for y(i) is similar; we just replace xp(i-1) by yp(i-1), and x(i-1) by y(i-

1)). From here we obtain: ax(i)=(t(i-1)-1)/t(i-1)·ax(i-1), bx(i)=(t(i-1)-

1)/t(i-1)·bx(i-1)+xp(i-1)/t(i-1) (the equation for y(i) is similar – we 

just replace the character “x” by “y” in the previous equation). After 

computing the values for the vertex N+1 (which is, in fact, vertex 1), 

we will write the equations: ax(N+1)·x(1)+bx(N+1)=x(1) => 

x(1)·(ax(N+1)-1)=-bx(N+1) (similarly, y(1)·(ay(N+1)-1)=-by(N+1)). 

We will determine the coordinates x and y of the polygon vertices 

independently. We will present the method only for the coordinate x, 

because it is identical for the coordinate y (we just replace x by y). If 

(ax(N+1)-1)≠0), then we obtain x(1)=-bx(N+1)/(ax(N+1)-1), and 

then we will compute the coordinates of the other vertices: 

x(i)=ax(i)·x(1)+bx(i). If (ax(N+1)-1)=0, then we have 2 subcases. In 

the first subcase, bx(N+1)=0; thus, we can choose any value for x(1), 

afterwards obtaining the x coordinates of the other vertices. In the 

second subcase, bx(N+1)≠0 and the problem admits no solution. If 

we allow t(q)=0 (i.e. xp(q)=x(q) and yp(q)=y(q)), then we split the 

points q into maximal chains [i..j], such that t(j)=t(i-1)=0 and t(i), 

t(i+1), …, t(j-1) are non-zero (with q+1=1, for q=N, and q-1=N, for 

q=1). For every chain [i..j], we write x(k) (y(k)) as a linear function 

fx(k) (fy(k)) of x(i) (y(i)) (k belongs to [i..j]), like we did before, when 

we considered linear functions of x(1) (y(1)). Since x(j)=xp(j) 

(y(j)=yp(j)), we compute x(i) (y(i)) from fx(j)=xp(j) (fy(j)=yp(j)) and, 

based on them, all the other values x(k) and y(k) of the points k of the 

chain [i..j]. The time complexity of the algorithm is O(N) in any case. 
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In the 3
rd

 problem we consider a triangle ABC, in which the length 

of the side AB (denoted by lc), the length of the side AC (denoted by 

lb) and the length of the median AM (denoted by lm) are given. AM is 

the segment which connects the vertex A of the triangle ABC to the 

midpoint of the segment BC. We want to compute the coordinates of 

the 3 vertices. We will binary search the length of the segment BC. 

Let’s assume that we considered this length to be 2·a. We will test if 

this length is valid. We will consider that the coordinates of the 

vertex B are (0,0), and those of vertex C are (2·a, 0). This way, the 

midpoint of the segment BC is at coordinates (a,0). If lm+a<lc or 

lm+a<lb, then the length 2·a is too small. Otherwise, we will binary 

search, between 0 and π, the angle AMB (determined by the points A, 

M and B). Let’s assume that, during the binary search, we selected an 

angle alpha. We compute the corresponding length of the side AB, as 

being c’=sqrt(lm
2
+a

2
-2·lm·a·cos(alpha)) (we denote by sqrt(x) the 

square root of x). If c’<lc, then alpha is too small and we will 

consider a larger angle next; otherwise, we will consider a smaller 

angle next. The binary search of the angle will end when the length 

of the search interval becomes smaller than a constant ueps. After 

finding the angle alpha for which the length of the side AB is equal 

to lc, we will compute the length of the side AC corresponding to this 

angle: b’=sqrt(lm
2
+a

2
-2·lm·a·cos(π-alpha)). If b’<lb, then the length 

2·a chosen within the binary search for the length of the side BC is 

too small and we will search for a larger value; otherwise, we will 

search for a smaller value. We finish the binary search when the 

length of the search interval becomes smaller than a predefined 

constant leps. The algorithm contains 2 nested binary searches and its 

complexity is O(log(LMAX)·log(UMAX)); LMAX is the maximum 

possible length of BC and UMAX=π. Alternatively, we can solve the 

system of equations (where we used cos(π-alpha)=-cos(alpha)): (1) 

lc
2
=lm

2
+a

2
-2·lm·a·cos(alpha) ; (2) lb

2
=lm

2
+a

2
+2·lm·a·cos(alpha). 

By adding (1) and (2) we obtain a=sqrt((lc
2
+lb

2
)/2-lm

2
). After 

replacing the value of a in (1), we can also compute cos(alpha). 
 

3. Classifying Edges and Vertices Relative to Matchings 
We consider a bipartite multigraph with n vertices overall on its 

left and right parts. Every edge (u,v) (u on the left side and v on the 
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right side) has a cost c(u,v)≥0. We want to classify every edge 

(vertex) of the multigraph in one of the following 3 categories: 1) it 

belongs to every minimum cost maximum matching ; 2) it belongs to 

at least one minimum cost maximum matching (but not to all of 

them) ; 3) it belongs to no minimum cost maximum matching. We 

start by computing a minimum cost maximum matching M, in O(n
3
) 

time. Obviously, the edges (vertices) from category 1 must be among 

the edges (endpoints of the edges) of M. Then, we will construct a 

directed multigraph G1, as follows. We direct every edge (u,v) which 

belongs to M from v to u and we assign it a cost c’(v->u)=-c(u,v). 

We direct every edge (u,v) which does not belong to M from u to v 

and we assign it a cost c’(u->v)=c(u,v). Then, we add an extra vertex 

S and all the zero-cost directed edges (S->u) and (v->S) (u and v on 

the left side), where u is a vertex such that no edges adjacent to it 

belong to M, and v is a vertex such that there is an edge adjacent to it 

in M. After constructing this multigraph, we will compute the set E1 

of edges which belong to at least one zero-cost cycle (considering the 

costs c’), i.e. a cycle whose sum of edge costs is 0. This test can be 

performed in O(n
3
) time using a standard method [1] for multigraphs 

with no negative cost cycles (as is our case), i.e. without cycles 

whose sum of edge costs is negative: we make all the edge costs non-

negative and we consider the directed multigraph G’ with the zero 

cost edges only; the edges of G’ which connect two vertices from the 

same strongly connected component of G’ belong to a zero-cost 

cycle in G1. Then, we construct another directed multigraph G2, 

starting from the initial multigraph. We direct the edges and assign 

them costs just like before. This time we will add a vertex T instead 

of S, together with all the zero-cost directed edges (v->T) and (T->u) 

(u and v on the right side), where v is a vertex which has no edge 

adjacent to it belonging to M, and u is a vertex which has one edge 

adjacent to it belonging to M. We then compute the set of edges E2 

which belong to at least one zero-cost cycle in G2. Let E1,a be the set 

of edges (S->v) from E1 and E1,b the set of edges (v->S) from E1, and 

let E2,a be the set of edges (v->T) from E2 and E2,b the set of edges 

(T->v) from E2. After this, we set E1=(E1\E1,a)\E1,b and 

E2=(E2\E2,a)\E2,b and we interpret the edges in E1 and E2 as being 
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undirected. The edges from category 1 are those from the set 

)(\ 21 EEM ∪ ; those from category 2 form the set  )( 21 EE ∪ . The 

edges from category 3 are the other edges of the multigraph (which 

do not belong to )( 21 EEM ∪∪ ). Let Q(S) be the vertex set 

containing all the endpoints of the edges in the set of edges S. The set 

of vertices from category 1 is (Q(M)\Q(E1,b))\Q(E2,b), from category 

2 is },{\))()()()(( ,2,2,1,1 TSEQEQEQEQ baba ∪∪∪ ; the remaining 

vertices belong to category 3. Thus, in O(n
3
) time, we can classify all 

the edges (vertices) of the multigraph in the 3 categories. 

We will now consider a similar problem, but for bipartite multi-

graphs without edge costs. We want to classify the edges (vertices) 

of the multigraph as: 1) belonging to every maximum matching ; 2) 

belonging to at least one maximum matching (but not all of them) ; 

3) belonging to no maximum matching. As before, we start by 

computing a maximum matching M, in O(n
2.5

) time. Then, we 

construct the multigraphs G1 and G2 like before, except that we do 

not assign costs to the edges. We compute the strongly connected 

components of G1 and G2 (in O(n
2
) time) and then we compute the 

sets of edges E1 and E2, consisting of the edges between two vertices 

u and v which belong to the same strongly connected component in 

G1 and, respectively, G2. We also compute QV1 (QV2) as the set of 

vertices u such that the edge (u,S) ((u,T)) or (S,u) ((T,u)) exists in E1 

(E2). Then, we remove the edges (S,*) and (*,S) from E1, the edges 

(T,*) and (*,T) from E2, and then we interpret the edges in E1 and E2 

as being undirected. Just like before, the set of edges in category 1 is 

)(\ 21 EEM ∪ , the set of edges in category 2 is )( 21 EE ∪  and the 

edges in category 3 are those edges which do not belong to 

)( 21 EEM ∪∪ . The set of vertices from category 1 is (Q(M)\QV1)\ 

QV2 and from category 2 is )( 21 QVQV ∪ ; the remaining vertices are 

in category 3. The algorithm is dominated by the computation of a 

maximum matching, and its complexity is O(n
2.5

). 

A related problem (whose solution was mentioned to us by C. 

Negruseri) asks for classifying the edges of a connected multigraph 

with N vertices and M edges as follows: 1) belonging to every 

minimum spanning tree (MST) ; 2) belonging to at least one MST 
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(but not all) ; 3) belonging to no MST. We will sort the edges in 

ascending order, according to their cost, and we will then consider 

groups of edges with equal costs, in increasing order of the costs. We 

will use the disjoint sets data structure, which provides the functions 

Find(x) and Union(x,y), for maintaining the connected components 

of the graph’s vertices. Let’s assume that we reached the group of all 

edges with cost C. Let QV(C) be the set of endpoints of the edges in 

the group. We will construct a multigraph G(C) whose set of vertices 

is the set {Find(x)|x ∈ QV(C)}; every edge (x,y) from the current 

group induces an edge (Find(x), Find(y)) (possibly a loop, if 

Find(x)=Find(y)) in G(C). Find(x) denotes the representative of the 

connected component containing node x, in the graph G’(C)=the 

graph containing all the N vertices and all the edges with cost strictly 

smaller than C. The edges (x,y) inducing critical edges (bridges) in 

G(C) belong to category 1; the edges inducing non-bridge edges 

which connect two different nodes in G(C) belong to category 2; the 

edges inducing loops (i.e. those edges which connect a node to itself) 

in G(C) belong to category 3. After considering a group of edges 

with cost C, for every edge (x,y) in the group, we set that x is in the 

same connected component as y (we call Union(x,y)). Computing the 

critical edges (bridges) of a multigraph with nC vertices and mC edges 

can be done in O(nC+mC) time (since we consider only those vertices 

which are adjacent to at least one of the mC edges => nC=O(mC)). 

The different stages of the algorithm have the following 

complexities: O(M·log(M)) for sorting the edges (or O(M+CMAX) if 

the edge costs are integer and are bounded by a small integer value 

CMAX); O(M·log*(N)) for all the Find(*) and Union(*,*) calls; O(M) 

overall for computing the critical edges (bridges) for all the groups of 

equal-cost edges. If we drop the costs of the edges, then every bridge 

(critical edge) of the multigraph belongs to every spanning tree and 

every other edge belongs to at least one spanning tree (i.e. for every 

edge (i,j) there is a spanning tree ST which contains it). 

We will now consider a directed flow network with designated 

source and sink vertices (and possibly parallel edges) and we want to 

classify the network edges as being upward critical or not (an edge 

(u->v) is upward critical if by increasing its capacity by 1 unit and 
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leaving the capacities of the other edges the same, the maximum 

flow in the network increases). First, we compute a maximum flow 

from the source(s) to the sink(s). Thus, every directed edge (u->v) 

has a flow f(u->v) on it, such that f(u->v)≤cap(u->v) (where cap(u-

>v) is the capacity of the edge). We perform a breadth-first search 

(BFS) starting from the source(s) and considering only those edges 

(u->v) with f(u->v)<cap(u->v). We mark the reachable vertices i by 

reachable1(i)=true (the other vertices j have reachable1(j)=false). 

Then, we perform a BFS from the sink(s), considering the reverse 

direction of the edges. As before, we only consider those edges (u-

>v) with f(u->v)<cap(u->v). We mark the reachable vertices i by 

reachable2(i)=true (the other vertices j have reachable2(j)=false). A 

directed edge (u->v) is upward critical if f(u->v)=cap(u->v) and 

reachable1(u)=true and reachable1(v)=false and reachable2(v)=true 

and reachable2(u)=false. If the multigraph is undirected then: (1) we 

compute a maximum flow ; (2) we consider only the edges (u,v) with 

f(u,v)<cap(u,v) when performing the two breadth-first searches ; (3) 

for every edge (u,v), we consider its two possible orientations, (u->v) 

and (v->u), and use the criterion described above; (u,v) is upward 

critical if it is classified as such for one of the two orientations. 
 

4. Conclusions and Related Work 
In this paper we addressed several network design and analysis 

problems, for which we presented novel algorithmic solutions. 

Similar or related problems were considered in [2, 4]. Some of our 

solutions are based on algorithmic techniques presented in [1, 3]. 
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